
Visualizing

Matrices as Functions

Matrix Bipartite Graph

Inputs

Outputs Domain Codomain

Matrices as Pixel Grids

A matrix is a grid of numbers arranged
in rows and columns. We will consider
a matrix composed entirely of 0s and
1s called the boolean matrix.

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

Let us use light and dark colors to
represent 0s and 1s to get a pixel grid
representation of the matrix.

Matrix Mappings

With labels on the rows and columns we can understand a matrix as
representing a relational mapping. Row indices { a, b, c, d }
represent inputs and column indices { m, n, o, p } represent
outputs.

A dark square means that a mapping
from input to output is present and the
light square means no mapping. For
example the dark square on the row
index a and column index n indicates
that there exists a mapping from input
a to output n.

Outputs

Inputs

Functional Matrices

In general, a boolean matrix is
equivalent to a relation. But since we
are attempting to study functions in
this series, we restrict our case to a
matrix where there will only be a single
dark square per row. This puts the
restriction that there is only a single
output for an input.

Outputs

Inputs

Rows vs. Columns

m o p n
a

b

c

d

m n p o
a

c

d

b

m n o p
a

b

d

c

m n o p
a

b

c

d

Considered this way we can understand this matrix as composed of
the following mappings:

Set of all mappings:

a n b o

c m d p

{ a n , b o , c m , d p }

Interpreting Matrix as a
Bipartite Graph

This relationship between inputs and outputs can be used to give an
interpretation of the matrix as a bipartite graph.

A mapping say from a to n
can be denoted as a line going
from an element a in the
domain to an element n in the
codomain.

Domain Codomain

{ a n , b o , c m , d p }

Walkthrough of the Mappings

m o pn
a

b

c

d

m

o
p

n

a
b
c
d

m n po
a

c

d

b

a

d

b
c

m
n

p

o

m n o p
a

b

d

c

m n o p
a

b

c

d

a
b
c
d

m
n
o
p

We can walkthrough each of the rows and see how the corresponding
mappings can be recognized in the bipartite graph representation.

Matrix ≅ Bipartite Graph

Putting these ideas together we can see how both the boolean
matrix and the bipartite graph can act as isomorphic
representations of arbitrary function mappings.

Inputs

Outputs Domain Codomain

≅

Matrix Multiplication as
Function Composition
Turns out this provides a good setting to understand how matrix
multiplication is function composition.

×

∘

Multiplication ≅ Composition

When a matrix is
thought of as
representing mappings,
matrix multiplication
becomes equivalent to
composing together two
maps. The result we
obtain has the inputs of
source matrix mapped on
to the outputs of the
target matrix.

Source Matrix

Source Graph

Target Matrix

Target Graph

Inputs

Outputs

Inputs

Outputs

×

Domain Codomain

∘
Domain Codomain

Composing Maps

a

b

c

d

Source

Target

u v w x
m

o

n

p

u w xv
m

n

p

o

u v xw
m

o

p

n

u v w x
m

n

o

p

× =

a

b

c

d

Result

When we multiply two matrices we are in effect computing
what the inputs of the source matrix map to in terms of
the second matrix.

Let us walk through the
process of matrix
multiplication to see how
works out.

As shown here a n
when multiplied with a
matrix where n w gives
us a w.

Mechanics of Matrix Multiplication I

To compute matrix multiplication,
we first take the input row of the
source matrix and multiply it pair
wise with each of the column of
the target matrix.

This process transfers mapping
from the row-column mappings of
source matrix onto the
corresponding row-column
mappings of the target matrix.

Let us see how the computation
achieves this.

u v w x
m

n

o

p

u w xv
m

n

o

p

u v xw
m

n

o

p

u v w x
m

n

o

p

a

b

c

d

Source

Target

×

Mechanics of Matrix Multiplication II

Row 1 × × × ×

Row 2 × × × ×

Row 3 × × × ×

Row 4 × × × ×

Col 1 Col 2 Col 3 Col 4

To multiply two matrices, each row in the source matrix is paired with
each of the columns in the target matrix. This means to multiply two
4 × 4 matrices, each of the 4 rows in the source has to be multiplied
with 4 columns of the target, resulting in a total of 16 multiplications.

Mechanics of Matrix Multiplication III

Let us see how to multiply a row of the source matrix with a column of
the target matrix. This computation will become the first spot in the
first row of the resulting matrix.

a

b

c

d

Source

u v w x
m

n

o

p

Target

To multiply a row by a column, we
have to pair the first element of the
row with the first element of the
column, second with the second and
so on.

 Mechanics of Matrix Multiplication IV

In our case, for the first row and column, it
will generate the following multiplications.

×

×

×

×

These products are then to be added together to generate the
first element in the result matrix.

(×) + (×) + (×) + (×)

Rules of Combination

To generate our results, we have the following rules for combining the
spots. If you are familiar with ideas in logic/set theory, you can easily
see that the + operation corresponds to the OR/Union operator and
× maps to the AND/Intersection operator respectively.

Multiplication

× =
× =
× =
× =

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1

Addition

=
=
=
=

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

First Spot Multiplication

Using the multiplication rules for
combining spots we pairwise
multiply individual spots of the row
and column.

a

b

c

d

Source

×

Target

For the first row-column
iteration we get these
multiplications

× =

× =

× =

× =

First Spot Addition

These multiplications are then combined using the + operation.
Thus for the first row-column iteration we get

(×) + (×) + (×) + (×)

which reduces down into

+ + + =

This becomes the first spot of the first
row of the result which is an empty
spot representing the value 0. It means
that there is no connection between a
and u in our result matrix.

a

b

c

d

Result

Second Spot Multiplication

Now, let us walk through
the second row.

a

b

c

d

Source

×

Target

And we get the following
multiplications

× =

× =

× =

× =

Second Spot Addition

Here too, we can’t find a dark spot / match.

+ + + =

This compuation goes into the
second spot of the first row of the
result, which also becomes a blank
spot like the last one.

a

b
c

d

Result

Third Spot Multiplication

Let us check out what the case
with third one is.

a

b

c

d

Source

×

Target

And there’s a match on the second index of the first row of the
source and the second index of the third column of the target!

The generated multiplications
are

× =

× =

× =

× =

Match Found!

And this will give us the following additions

+ + + =

Having at least one dark spot means that on
addition, this will also generate a dark spot.
Thus the third spot in the first row of the
resultant matrix turns out to have a match!

a

b

c

d

Result

Fourth Spot Multiplication

And for completion let us walk
through last multiplication

of first row of source matrix.

a

b

c

d

Source

×

Target

It generates these
multiplications

× =

× =

× =

× =

Fourth Spot Addition

And since no match was found, this will reduce to an empty
spot.

+ + + =

which becomes the fourth spot in the
first row.

a

b

c

d

Result

First Row Result

So we computed our result for the first row:

Turns out, the result has a single dark spot and the rest empty. It
follows the characteristic of a logical matrix of a function that an input
only ever maps to a single output. This property will be maintained
throughout the next matrix multiplications.

a

b

c

d

Basis Shift

Notice that the result matrix has as index { a, b, c, d } for the rows,
which correspond to the rows of the source matrix and { u, v, w, x }
as columns which correspond to columns of the target matrix. So in
effect we are creating a new mapping from the inputs of the source
matrix to the outputs of the target matrix!

a

b

c

d

Source

×

m

n

o

p

Result

=

a

b

c

d

Result

Computing with graphs

Now it is time for us to juxtapose matrix computations with
functional bipartite graphs and study them comparatively.

a

b

c

d

×

u v w x

∘

Matrix multiplication with graphs

Multiplication of a row with columns in matrix form is equivalent in
bipartite graph representation to seeing where the output of the
codomain of the source graph connects to among the inputs of the
domain of the target graph. For the previous matrix multiplication
computing first row of result matrix, output of source graph
matches with the mapping in the target graph.n w

a n

a

b

c

d

×

u v w x

a

b

c

d

×

u w x v

a

b

c

d

×

u v x w

a

b

c

d

×

u v w x

∘

∘

∘

∘
m

o
p

n
m

o
p

n

Source SourceTarget Target

≅

Excluding the Common Middle

Once we find the common connection, we generate our result by
drawing an edge between input of the source graph and corresponding
output of the target graph eliding the intermediary points.

In the above example this effectively takes us from: .
Eliding the common intermediary , we get: . Thus we get the
result where input a of the domain of the source function is mapped to
output w in the codomain of the target function via .

n

n

a n n w
a w

m

o
p

n ∘
m

o
p

n

Source Target

Swift composition with graphs

m

o
p

n ∘
m

o
p

n =

∘ =

m

n

p
o ∘

m

n

p
o =

∘ =

In effect, we are seeking the mutual connections that exist between
codomain of source graph and domain of target graph — we look at
source outputs and then check what they map to in the target graph.
Once we understand where they lead up to, we connect the inputs of
source with these outputs in the target. By drawing such an edge, we
generate a new graph that “hops” from the inputs of the source to
outputs of the target graph. This process generates the composition!

a n

c m

n w

m u

a w

c u

b o

d p

o v

p x

b v

d x

Composition ≅ Graph Hop

We obtain the result by juxtaposing
two graphs and unifying the
codomain of source and domain of
target. With this representation,
linking inputs of source to outputs of
target via the intermediary set gives
us the composition.

Graph composition

To compute the end result, we
exclude the intermediary set and
obtain a relation which maps the
input of the first graph to the
outputs of the second graph.

Resulting graph after hop

Graph Hop Basis Shift

∘ =

If you observe, what is happening here is a graph hop! Matrix
multiplication is transitively doing a graph hop that jumps from inputs of
source to outputs of target. Connecting the source inputs to the target
outputs give us this hop, which as noted in the case of the matrix, gives
us source inputs mapped to the target outputs in terms of the target
inputs.

Faster Matrix Multiplication

We saw how traditional matrix multiplication works, but that was a
rather intricate process. It gets daunting when the matrix grows in
complexity. But there turns out to be a neat economic way to just
compute the result by eye!

The graph hop idea ushers us towards an economic way to compute the
result. We can do this visually and quickly write down the matrix. Let us
see how!

⊆

⊇

a

b

c

d

Source Target

Local Insight for Computation

An insight for computing matrices quickly: the result matrix will have a
dark spot in the mapping between those indices where the same index
of the row of source matrix and the column of output matrix share a
dark spot.

In our case, for first row-column multiplication, we can see that the
first row of source labelled a and second column of target labelled w
share a dark spot on the same second index, this means a w will be
connected in the result.

a

b

c

d

×

u v w x
a

b

c

d

×

u w x v
a

b

c

d

×

u v xw
a

b

c

d

×

u v w x

=

u v xw
a

b

c

d

Global Insight for Computation
That was a “local” way to see matrix multiplication. Turns out there is
a global way to interpret it!

a

b

c

d

m

n

o

p

Given both the source columns and
target rows are in the same order, a
match is found when a target
column is a rotated copy of the
source row we are multiplying it
with. This means on composing we
are looking for a congruence!

There’s a small wrinkle that if the
function turns out to have more than
one dark spot in the same column, we
look for an inclusion of the row in the
column rather than a pure congruence.

a

b

c

d

m

n

o

p

Fast Computations using Symmetry
Using this insight lets us outline the spots where such a symmetry is
found. This approach is comparable to lookup tables in computer
programming, where we just “look” at the computations done ahead
of time and draw the result.

If we mark these selections as a connection, our computation is done!

→

All Together Now
Now let us see both the matrix and graph representations side by side.
With the multiplication/composition, we are seeking what each output
of the source matrix/graph map to in the target matrix/graph.

a

b

c

d

×

u v w x

=
u v w x

a w = ∘
a

b

c

d

×

u v w x

=
u v w x

b v = ∘
a

b

d

c
×

u v w x

=
u v w x

c u = ∘
a

b

c

d

×

u v w x

=
u v w x

d x = ∘

Final Result

Putting these together, this is our final result

Source Result

Result

Target

× =

=

Source

∘
Target

{ a n , b o , c m , d p } { m u , n w , o v , p x } { a w , b v , c u , d x }

