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Matrices as Pixel Grids

A matrix is a grid of numbers arranged 
in rows and columns. We will consider 
a matrix composed entirely of 0s and 
1s called the boolean matrix. 

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

Let us use light and dark colors to 
represent 0s and 1s to get a pixel grid 
representation of the matrix.



Matrix Mappings

With labels on the rows and columns we can understand a matrix as 
representing a relational mapping. Row indices { a, b, c, d } 
represent inputs and column indices { m, n, o, p } represent 
outputs.

A dark square means that a mapping 
from input to output is present and the 
light square means no mapping. For 
example the dark square on the row 
index a and column index n indicates 
that there exists a mapping from input 
a to output n.
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Functional Matrices

In general, a boolean matrix is 
equivalent to a relation. But since we 
are attempting to study functions in 
this series, we restrict our case to a 
matrix where there will only be a single 
dark square per row. This puts the 
restriction that there is only a single 
output for an input.

Outputs

Inputs



Rows vs. Columns
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Considered this way we can understand this matrix as composed of 
the following mappings:

Set of all mappings:

a n b o

c m d p

{ a n , b o , c m , d p }



Interpreting Matrix as a 
Bipartite Graph

This relationship between inputs and outputs can be used to give an 
interpretation of the matrix as a bipartite graph.

A mapping say from a to n 
can be denoted as a line going 
from an element a in the 
domain to an element n in the 
codomain.
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Walkthrough of the Mappings
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We can walkthrough each of the rows and see how the corresponding 
mappings can be recognized in the bipartite graph representation.



Matrix ≅ Bipartite Graph

Putting these ideas together we can see how both the boolean 
matrix and the bipartite graph can act as isomorphic 
representations of arbitrary function mappings.
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Matrix Multiplication as 
Function Composition
Turns out this provides a good setting to understand how matrix 
multiplication is function composition.

×

∘



Multiplication ≅ Composition

When a matrix is 
thought of as 
representing mappings, 
matrix multiplication 
becomes equivalent to 
composing together two 
maps. The result we 
obtain has the inputs of 
source matrix mapped on 
to the outputs of the 
target matrix.

Source Matrix

Source Graph

Target Matrix

Target Graph
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Composing Maps
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Result

When we multiply two matrices we are in effect computing 
what the inputs of the source matrix map to in terms of 
the second matrix.

Let us walk through the 
process of matrix 
multiplication to see how 
works out.

As shown here a     n 
when multiplied with a 
matrix where n     w gives 
us a     w.



Mechanics of Matrix Multiplication I

To compute matrix multiplication, 
we first take the input row of the 
source matrix and multiply it pair 
wise with each of the column of 
the target matrix.



This process transfers mapping 
from the row-column mappings of 
source matrix onto the 
corresponding row-column 
mappings of the target matrix.



Let us see how the computation 
achieves this.
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Mechanics of Matrix Multiplication II

Row 1 × × × ×

Row 2 × × × ×

Row 3 × × × ×

Row 4 × × × ×

Col 1 Col 2 Col 3 Col 4

To multiply two matrices, each row in the source matrix is paired with 
each of the columns in the target matrix. This means to multiply two 
4 × 4 matrices, each of the 4 rows in the source has to be multiplied 
with 4 columns of the target, resulting in a total of 16 multiplications.



Mechanics of Matrix Multiplication III

Let us see how to multiply a row of the source matrix with a column of 
the target matrix. This computation will become the first spot in the 
first row of the resulting matrix.

a 

b 

c 

d

Source

u  v  w  x
m

n 

o 

p

Target

To multiply a row by a column, we 
have to pair the first element of the 
row with the first element of the 
column, second with the second and 
so on.



 Mechanics of Matrix Multiplication IV

In our case, for the first row and column, it 
will generate the following multiplications.

×

×

×

×

These products are then to be added together to generate the 
first element in the result matrix.

( × ) + ( × ) + ( × ) + ( × )



Rules of Combination

To generate our results, we have the following rules for combining the 
spots. If you are familiar with ideas in logic/set theory, you can easily 
see that the + operation corresponds to the OR/Union operator and 
× maps to the AND/Intersection operator respectively.

Multiplication

× =
× =
× =
× =

0 x 0 = 0

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1

Addition

=
=
=
=

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1



First Spot Multiplication

Using the multiplication rules for 
combining spots we pairwise 
multiply individual spots of the row 
and column.
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For the first row-column 
iteration we get these 
multiplications
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First Spot Addition

These multiplications are then combined using the + operation. 
Thus for the first row-column iteration we get

( × ) + ( × ) + ( × ) + ( × )

which reduces down into

+ + + =

This becomes the first spot of the first 
row of the result which is an empty 
spot representing the value 0. It means 
that there is no connection between a 
and u in our result matrix.
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Second Spot Multiplication

Now, let us walk through 
the second row.
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And we get the following 
multiplications
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Second Spot Addition

Here too, we can’t find a dark spot / match.

+ + + =

This compuation goes into the 
second spot of the first row of the 
result, which also becomes a blank 
spot like the last one.
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Third Spot Multiplication

Let us check out what the case 
with third one is.
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And there’s a match on the second index of the first row of the 
source and the second index of the third column of the target!

The generated multiplications 
are
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Match Found!

And this will give us the following additions

+ + + =

Having at least one dark spot means that on 
addition, this will also generate a dark spot. 
Thus the third spot in the first row of the 
resultant matrix turns out to have a match!
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Fourth Spot Multiplication

And for completion let us walk 
through last multiplication 

of first row of source matrix.
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It generates these 
multiplications
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Fourth Spot Addition

And since no match was found, this will reduce to an empty 
spot.

+ + + =

which becomes the fourth spot in the 
first row.
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First Row Result

So we computed our result for the first row:

Turns out, the result has a single dark spot and the rest empty. It 
follows the characteristic of a logical matrix of a function that an input 
only ever maps to a single output. This property will be maintained 
throughout the next matrix multiplications.
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Basis Shift

Notice that the result matrix has as index { a, b, c, d } for the rows, 
which correspond to the rows of the source matrix and { u, v, w, x } 
as columns which correspond to columns of the target matrix. So in 
effect we are creating a new mapping from the inputs of the source 
matrix to the outputs of the target matrix!
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Computing with graphs

Now it is time for us to juxtapose matrix computations with 
functional bipartite graphs and study them comparatively.
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Matrix multiplication with graphs

Multiplication of a row with columns in matrix form is equivalent in 
bipartite graph representation to seeing where the output of the 
codomain of the source graph connects to among the inputs of the 
domain of the target graph. For the previous matrix multiplication 
computing first row of result matrix, output of source graph     
matches with the mapping          in the target graph.n w
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Excluding the Common Middle

Once we find the common connection, we generate our result by 
drawing an edge between input of the source graph and corresponding 
output of the target graph eliding the intermediary points.

In the above example this effectively takes us from:                   . 
Eliding the common intermediary , we get:         . Thus we get the 
result where input a of the domain of the source function is mapped to 
output w in the codomain of the target function via .
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Swift composition with graphs
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In effect, we are seeking the mutual connections that exist between 
codomain of source graph and domain of target graph — we look at 
source outputs and then check what they map to in the target graph. 
Once we understand where they lead up to, we connect the inputs of 
source with these outputs in the target. By drawing such an edge, we 
generate a new graph that “hops” from the inputs of the source to 
outputs of the target graph. This process generates the composition!
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Composition ≅ Graph Hop

We obtain the result by juxtaposing 
two graphs and unifying the 
codomain of source and domain of 
target. With this representation, 
linking inputs of source to outputs of 
target via the intermediary set gives 
us the composition.

Graph composition

To compute the end result, we 
exclude the intermediary set and 
obtain a relation which maps the 
input of the first graph to the 
outputs of the second graph.

Resulting graph after hop



Graph Hop Basis Shift

∘ =

If you observe, what is happening here is a graph hop! Matrix 
multiplication is transitively doing a graph hop that jumps from inputs of 
source to outputs of target. Connecting the source inputs to the target 
outputs give us this hop, which as noted in the case of the matrix, gives 
us source inputs mapped to the target outputs in terms of the target 
inputs.



Faster Matrix Multiplication

We saw how traditional matrix multiplication works, but that was a 
rather intricate process. It gets daunting when the matrix grows in 
complexity. But there turns out to be a neat economic way to just 
compute the result by eye!

The graph hop idea ushers us towards an economic way to compute the 
result. We can do this visually and quickly write down the matrix. Let us 
see how!
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⊇
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Local Insight for Computation

An insight for computing matrices quickly: the result matrix will have a 
dark spot in the mapping between those indices where the same index 
of the row of source matrix and the column of output matrix share a 
dark spot.

In our case, for first row-column multiplication, we can see that the 
first row of source labelled a and second column of target labelled w 
share a dark spot on the same second index, this means a     w will be 
connected in the result.
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Global Insight for Computation
That was a “local” way to see matrix multiplication. Turns out there is 
a global way to interpret it!
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Given both the source columns and 
target rows are in the same order, a 
match is found when a target 
column is a rotated copy of the 
source row we are multiplying it 
with. This means on composing we 
are looking for a congruence!

There’s a small wrinkle that if the 
function turns out to have more than 
one dark spot in the same column, we 
look for an inclusion of the row in the 
column rather than a pure congruence.
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Fast Computations using Symmetry
Using this insight lets us outline the spots where such a symmetry is 
found. This approach is comparable to lookup tables in computer 
programming, where we just “look” at the computations done ahead 
of time and draw the result.

If we mark these selections as a connection, our computation is done!

→



All Together Now
Now let us see both the matrix and graph representations side by side. 
With the multiplication/composition, we are seeking what each output 
of the source matrix/graph map to in the target matrix/graph.
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Final Result

Putting these together, this is our final result

Source Result

Result

Target

× =

=

Source

∘
Target

{ a n , b o , c m , d p } { m u , n w , o v , p x } { a w , b v , c u , d x }


